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Space-Charge-Limited Currents Injected from a Point Contact* 
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The theory of one-carrier, space-charge-limited currents has been studied for a spherical-flow geometry. 
The outstanding result is that the initial space-charge-controlled regime in the current-voltage characteristic, 
following the Ohm's law regime which always obtains at sufficiently low voltages, is universally a f-power 
law: I—KV*. The coefficient K depends on the density and energy distribution of traps, but is independent 
of both the point-contact radius and the anode radius. This result suggests the possible use of space-charge-
limited currents injected from a point as a probe to measure the density of traps locally, i.e., in the neighbor
hood of the point. Experimental evidence for the f-power law, obtained with single-crystal CdS, is presented. 

I. INTRODUCTION 

TH E R E is an extensive literature1 dealing with 
theory and experiments on steady-state, one-

carrier space-charge-limited (SCL) injection currents 
in solids with a planar-flow geometry. In contrast, 
scant attention has been given to this type of current 
in other flow geometries, there being only two refer
ences2 in the literature known to the authors. This 
general lack of interest is, no doubt, explained by the 
presumed expectation that nothing fundamentally new 
and interesting would emerge from such a study. I t is 
well known, for example, that for SCL current flow in 
vacuum, the planar-, spherical-, and cylindrical-flow 
geometries all yield basically the same I-V (current-
voltage) characteristic, namely, / oc J/3/2. In fact, it 
has been demonstrated,3 via a dimensional analysis, 
that this same current-voltage relationship obtains for 
the vacuum problem for electrodes of arbitrary shape. 

One of the authors (A.M.) recently had occasion to 
utilize a point-contact electrode as a means of achieving 
a high electric-field intensity, locally, in an experimental 
study of high-field phenomena in conducting cadmium 
sulfide. In the course of this work it was discovered that 
when the point was biased negatively, a marked 
majority-carrier injection was produced (see Fig. 1), 
even though the thermal-equilibrium density of con
duction-band electrons exceeded 1015 cm~3. This work, 
in turn, led to the theoretical study, which is reported 
here, of steady-state, one-carrier SCL injection currents 
in a spherical geometry. The point of the report is that 
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U. S. Air Force, Bedford, Massachusetts under Contract No. 
AF19(604)8353, and by the RCA Laboratories, Princeton, New 
Jersey. 

f Permanent address: Physics Department, Hebrew University, 
Jerusalem, Israel. 

1 Extensive bibliographies are given in two review papers by 
M. A. Lampert, Proc. IRE 50, 1781 (1962); Reports on Progress 
in Physics, 1964 (The Institute of Physics and the Physical 
Societv, London, 1964). 

2 L.'Patrick, J. Appl. Phys. 28, 765 (1957), Appendix A; B. 
Meltzer, J. Electron. Control 8, 171 (1960). 

3 K. R. Spangenberg, Vacuum Tubes (McGraw-Hill Book 
Company, Inc., New York, 1948), Chap. 8. 

our study has brought to light a new result, unique to 
the spherical geometry, which appears to us of intrinsic 
interest and, further, which may have important 
application in the study of defect states in solids. 

The outstanding result of our study is as follows: 
For current injection at a point contact, the initial 
space-charge controlled regime of the I-V character
istic, following the OhmVlaw regime which always 
obtains at sufficiently low voltages, is generally of the 
form: I=KVZ/2. The constant K depends on the density 
and energy distribution of the traps in the forbidden 
gap which can capture and immobilize the injected 
carriers. However, K is independent of the point-
contact radius rc as well as of the anode radius ra. 

We shall see in the following section that the f-power 
law is a consequence of the particular manner in which 
the injected space charge increasingly spreads into the 
solid, beyond the immediate vicinity of the injecting 
contact, as the applied voltage increases. Over the range 
of voltages for which Ohm's law is valid, the injected 
space charge is confined essentially inside a radius 
rx<2rc. Following the departure from Ohmic behavior, 
i.e., following the onset of the space-charge-controlled 
characteristic, the confining radius rx for the injected 
space charge increases as V112, and this relationship 
leads to the above-cited f-power law. By the same token 
it is obvious that only the traps in the neighborhood of 
the injecting point are initially important for the 
determination of the coefficient K. 

These features of the f-power law suggest immedi
ately the application of this kind of measurement to 
the determination of trap densities locally in the solid, 
namely, in the neighborhood of the injecting point 
contact. I t is an important experimental convenience 
in this measurement that the coefficient K is inde
pendent of both the cathode and anode radii. In effect, 
the measurement itself is then independent of both 
radii. Thus one need use only a reasonably small point 
and need not bother to measure its radius. Further, 
the anode need not be actually spherical; it need be only 
a broad area contact and can then be quite flat without 
impairing the measurement. This is particularly con
venient in single-crystal studies since a spherical or 
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hemispherical anode would be a generally impractical 
configuration. 

In Sec. I I we discuss the physics underlying the 
f-power law and shall derive the law in a rather general 
way. In Sec. I l l we establish some useful mathematical 
results based on limiting functional forms for the field 
and injected carrier density. In Sec. IV we discuss, in 
detail, several prototype trapping situations: no traps, 
deep traps, shallow traps, and an exponential distri
bution of traps. In Sec. V experimental confirmation 
of the f-power law is presented for conducting cadmium 
sulfide. In Appendix A a rather formal mathematical 
discussion of the f-power law is given. In Appendix B 
the I-V characteristics for two pure space-charge-
controlled regimes are given, the corresponding results 
for cylindrical-flow geometry also being presented. 

Throughout the entire discussion it is assumed that 
r^ra, since this is the situation of interest. Indeed, it 
is a necessary condition for existence of the f-power 
regime in the I-V characteristic. Under this condition, 
it is possible to simplify considerably the analytic work 
through judicious approximations. The resulting sim
plified treatments have the not inconsiderable virtue 
of laying bare the underlying physics—a virtue not 
possessed by the more formal approach of Appendix A. 

For the sake of definiteness, we take the one-carrier 
current to be an electron current. All results are equally 
valid for hole currents with suitable change of nomen
clature. Throughout the article mks units are employed, 
except where otherwise specified. 

II. GENERAL DERIVATION OF THE 
f-POWER LAW 

The equations governing steady-state, one-carrier 
SCL current flow in spherical geometry are the particle-
conservation equation 

I=4:Tefi(no-\-ni)r2S= const, (1) 

where, as usual for this type of problem, the diffusive 
contribution to the current has been neglected; the 
Poisson equation 

€(1/V2) (d/dr) (r2S) ^e(ni+nt>i). (2) 

In the above / is the total current, e the electronic 
charge, JJL the free-electron drift mobility, e the static 
dielectric constant, 8 the electric-field intensity, r the 
radius, no the thermal-equilibrium free-electron density, 
fit the injected, excess free-electron density, and nt,i the 
injected, excess trapped-electron density. 

Further, it is assumed as usual,4 that the free and 
trapped carriers in the solid are in quasithermal 
equilibrium, i.e., that the steady-state Fermi level 
(SSFL) F, defined by nQ+m=Ne exp(F-Ec)/kT, with 
Ne the effective density of states in the conduction 
band, Ec the bottom conduction-band level, k Boltz-
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FiG.f 1. Current-voltage characteristics obtained with a point-
contact electrode on a single crystal of CdS, resistivity 20 12-cm. 
All measurements were made at room^temperature. The point 
radius was « 1 /x. The crosses represent data taken with the point 
injecting, i.e., biased negatively; the solid line labeled 0 is a 
smooth fit to the data. The dashed curve is a three-halves power-
law curve fitted to the data at one point, 1 = 1 mA. The open 
circles represent data taken with the point biased positively. The 
straight line labeled © is an Ohm's-law fit to the data. 

mann's constant, and T the temperature in degrees 
Kelvin, likewise determines the occupancy of the traps 
via the Fermi-Dirac occupation function. Finally, we 
note that the applied voltage 

V= / Sdr, 

with rc and ra the cathode and anode radius, 
respectively. 

The boundary condition (B.C.) appropriate to the 
simplified theory which neglects diffusion is5 

S=0 at r=rc. (3) 

The above-characterized simplified theory is not, in 
general, analytically tractable, as is shown in Appendix 
A. (This is in contrast to the simplified theory for 
planar flow5 which is analytically tractable for most 
cases of interest.) The next step then is further simplifi
cation, and the line of procedure is suggested by that 
portion of the I-V characteristic we wish to examine. 

Our interest in this report, whatever the particular 
problem (trap configuration), is largely confined to the 
initial space-charge regime of the I-V characteristic, 
immediately following the Ohm's-law regime. The 
former is the regime in which the injected space charge 
is pushing out into the solid beyond the immediate 
vicinity of the cathode with increasing voltage, but has 
not yet reached the anode. Let rx be that radius at 
which fii=no. [Note, from Eq. (2), that r2S increases 

4 A. Rose, Phys. Rev. 97, 1538 (1955). 5 M. A. Lampert, Phys. Rev. 103, 1648 (1956). 
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monotonically with increasing r. Therefore, from (1), 
ni decreases monotonically, from oo at r=rc, with 
increasing r. The initial space-charge-controlled regime 
is, by definition, that regime over which ni(ra)<no.~] 
I t is convenient to consider two separate regions of the 
solid, I and II , and to make the following basic approxi
mations in these regions: 

Region I, rc<r<rx: n0 is neglected; 

I=4:7refjMir'2 8. (4a) 

Region I I , rx<r<ra: n% is neglected; 

I=4:irefj,nQr28. (4b) 

The rationale for these approximations, first introduced 
by Patrick,2 rests on the monotonic-decreasing behavior 
of uiif) demonstrated above. The solutions in regions 
I and I I are matched by requiring that the electric 
field intensity be continuous across rx. 

The total voltage V can, of course, be written as 

/•rx pro, 

V=Vc,*+VXta', Vc,x= / Sdx, Vx>a= / 'Sdx. (5) 

Normal, straightforward, analytical development of 
the solution to the problem as now formulated requires 
specification of the trap configuration. However, 
because we wish here to seek out the physical roots of 
the universal f -power law, we rest the further analytical 
development on an essentially dimensional analysis of 
the properties of the space-charge region I. This 
analysis effectively skirts the details of the trap con
figuration. Namely, we assume that the voltage Vc,x 
across region I and the total injected charge 

(•rx 

Qx=4:we / (ni+nt,i)r
2dr, 

• / 

contained in region I, can be written, respectively, as 

Ve,z=cirxSx, (6) 

Qx=c2(4:Tr/3)rx
Be(no+nt,o), (7) 

where 8X= 8(rx), nt,o is the excess, trapped-electron 
density in quasithermal equilibrium with the excess 
free-electron density Hi—no, and ci, c2 are constants of 
order unity. These assumptions concerning c\ and c2 

give significant content to the relations (6) and (7). 
The relation (6) corresponds to the physical situation 

in which the main contribution to the voltage Vc,x 
comes from the region of the effective anode for region 
I, namely at r=rx, rather than from near the cathode. 
Since ni(rx) = no and nt,i(rx) = nt,o, the meaning of 
relation (7) is that the total space charge Qx in region I 
is adequately estimated by assuming that the excess 
charge density at the effective anode, e (^o+^,o)>i s 

uniformly distributed throughout region I. Note that 
because of the mono tonic decreasing character of tii(r), 
c2> 1 necessarily. A discussion as to why relations (6) 

and (7) are expected to hold generally is given in Sec. 
I I I . 

We proceed to the derivation of the f -power law. 
First we note that region I I is an "Ohmic" region, 
characterized by 

VXla=fx8x; I=4:7rejjLfiQrxVXla» (8) 

This is easily shown by noting that in region I I , from 
(1) with fii=0, 8=A/r2 with A = I/^we/jLUo, so that 
VXta = A(rx-

1 — ra~
l)c^.A/rx, for rx<£ra. [Ohm's law for 

the solid is given by the right-hand I-V relation in (8), 
taking rx=rc and Vx,a= V.~] 

From (5), (6), and (8), and from (1) taken at rx, it 
follows that 

rx8x=V/(l+a); / = W v / / ( l + d ) . (9) 

From Gauss' theorem, which is the integral of Eq. 
(2) from rc to rx, 

Qx f 3eV l1'2 

rx
28x=—; rx=\ , (10) 

4x6 l(l+Ci)c2e(»o+»*,o)J 

where the right-hand relation in (10) follows from the 
left-hand relation, using (7) and (9). 

The final result, the universal f-power law, follows 
from substitution for rx, from (10), into the I-V 
relation in (9): 

/ = AwejjLfii 
f 3e YI2f V V / 2 

[c2e(no+nt,o)> \ 1 + C i / 
(11) 

In practical units (11) becomes 

7=2.6X10- 1 5 

C2\ (n0+nt,o) J \ l + c i / 

1/2 / y v3/2 

[ ) A, (11a) 

with JJL in cm2/V-sec, no and nt,o in cm"3, V in V, and 
with K the relative dielectric constant. 

Note that Eqs. (11) and (11a) refer to the full 
spherical geometry. For the hemispherical geometry, 
used to approximate the point contact, the right-hand 
sides of Eqs. (11) and (11a) must be divided by two. 

In Sec. I l l it is argued that the possible ranges of 
a and ci are \<c\<2 and 1<C2<2, respectively, where 
the lower limits obtain in the deep-trap situation and 
the upper limits in the trap-free and shallow-trapping 
situations. The corresponding variation in the factor 
1 A 2

1 / 2 ( 1 + C I ) 3 / 2 in Eqs. (11), (11a) covers the range 
from (2/3)3 '2= 0.545 at the lower limits to 1^/6=0.136 
at the upper limits, a factor of four between the two 
extremes. Explicit values for ci and c2 are calculated 
for the trap-free, shallow-trap, deep-trap, and ex-
potential distribution trap configurations in Sec. IV. 

I t remains to determine the onset voltage for the 
f-power law regime and the range of voltages over which 
the law is valid. The onset voltage, i.e., the voltage of 
transition between Ohm's law and the f-power law, is 
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given by the intersection of the I-V law in (8), with 
Yx~vc and Vx,a=V, with the I-V law in (11). Letting 
subscript "cr" indicate the value of a quantity evaluated 
at this transition, we readily obtain 

rx,cr= (1+CiK; Vcr=Qx,cr/4:7rerc; 

ICr=Qx,cr/fa, fo^e/enoix, (12) 

where QXiCr is given by (7) with rx=rXiCr. 
By dividing the left-hand relation in (10) by the 

left-hand relation in (9), we obtain the useful relation: 

V>Vcr: Q = CV, C=4:Trerx/l+ci. (13) 

This physically plausible relationship establishes, from 
the right-hand relation in (10), that C<*V1}2. Note 
that CCr = C(Vcr) = ^rrerc. 

The transition from this initial space-charge-con
trolled regime of the I-V characteristic to the succeeding 
regime obviously takes place at that voltage V J at 
which rx=rXiCr'~.ra. Since rx>crc^.rc, from (12), it follows 
from the right-hand relation in (10) that VJ/Vcr 
— (ra/rc)

2. Since we have assumed that ra^>>rc, it follows 
that the f-power law obtains over an enormous range 
of voltages. 

All succeeding regimes of the one-carrier SCL I-V 
characteristic, following the f-power-law regime, depend 
explicitly on the anode radius ra as seen in Table I of 
Appendix B. Therefore, the theoretical results for 
these succeeding regimes are applicable only if the 
physical shape of the anode bears a reasonably close 
resemblance to a spherical or hemispherical surface. 
For single-crystal materials these shapes are certainly 
inconvenient, if not altogether impractical. On the 
other hand, for the study of polymers or glassy 
materials, these shapes may indeed prove practical. 

From the physical analysis of the f-power-law regime 
it follows, since the injected space charge spreads out 
gradually, with increasing voltage, from the point, 
that the anode configuration is irrelevant at voltages 
V such that rx<K(Aa/Tr)112, where Aa is the effective 
anode area. Further, even if the injecting point contact, 
of effective area Ac, cannot be adequately represented 
by a hemispherical electrode, one has the intuitive 
expectation that the one-dimensional, radial-flow 
analysis is still applicable to obtain the I-V character
istic over the range of voltages for which (A c/Tr)lj2<^r x 

<£(Aa/Tr)112. Therein lies the potential usefulness of the 
injecting point as a "probe" to study trapping "locally". 

The injecting-point "probe" and the planar-flow 
measurement technique1 appear to have rather com
plementary virtues for the study of defect states in 
insulators. The former studies traps locally, near the 
injecting point, and the latter necessarily studies an 
average over all traps between cathode and anode. The 
point-contact method is experimentally more con
venient in at least two respects. First, where contact 
difficulties are present, which is frequently the case, 
they can be more easily overcome with a point contact 

than with a wide-area contact; e.g., tunnelling to 
achieve injection is more easily promoted with a small-
radius point. Also if injection has to be achieved by 
electronic means, e.g., electron-bombardment-induced 
or photoinduced conductivity, a higher density of free 
carriers can be achieved locally (equivalent point 
contact). In this connection the use of the naturally 
narrow-beam laser light may prove exceptionally useful. 
Thickness requirements with the planar-flow geometry 
are usually quite severe and often very thin samples 
have to be used. Certainly, thicker samples can be used 
with the point-contact technique. On the other hand, 
for very high-resistivity insulators, e.g., polystyrene, 
some background, light-stimulated conductivity may 
be necessary to obtain an m high enough to use the 
point-contact method conveniently. 

In favor of the planar-flow measurements, they can 
yield both more information, e.g., the trap energy level, 
from the richer structure in the SCL I-V curve5 and 
more accurate information, e.g., a remarkably accurate 
determination of the average trap density from the 
trap-filled-limit voltage5 FTFL. (TO be sure, in some 
cases difficulties of inconsistencies in the derived data 
have appeared.6) The injecting-point measurement at a 
single temperature yields directly no information about 
the trap energy level, and further, yields the quantity 
nt,o in Eq. (11) with a maximum uncertainty of a factor 
of 16. (Actually, the latter uncertainty can be narrowed 
by an order of magnitude with only minimal qualitative 
information about the traps, such as whether they are 
shallow or deep or distributed in energy. The tem
perature-dependent behavior of nt,o can be expected 
to yield such information.) 

A further uncertainty relates to our idealization of 
the injecting-point geometry. We have represented the 
injecting point mounted against a flat surface by a 
hemispherical flow geometry and then neglected 
possible surface effects. If the total number of surface 
states out to radius rx are less than Qx/ef presumably 
only small errors are introduced by our treatment. 
However, if these surface states exceed Qx/e, the 
magnitude of the error is unknown and remains to be 
investigated. Here an experimental approach may 
prove more fruitful, or convenient, than an attempted 
generalization of the theory. 

III. SOME OBSERVATIONS CONCERNING a AND c2 

In this section we note some useful relations con
cerning c\ and ci and, in particular, give an argument 
establishing limits on their possible values. We first 
note two very useful relations 

If <§oc/^? with n>~\, 

then 

c i = l / ( « + l ) . (14) 

6 R. H. Bube, J. Appl. Phys. 33, 1733 (1962). 
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If (ni+nt,i)^rm with 0>m>~- 3 , 
then 

c2=3/(tn+3). (15) 

The exponent m cannot be positive since »»•+#*,* must 
be nonincreasing with r. These relations are easily 
proven by substituting the assumed forms for the radial 
dependence of 8 and (ni+nt,i) into the defining 
integrals for Vc,x and Qx, respectively. The conditions 
n>~ 1 and m>—3 enable us to neglect rc

n+l with 
respect to rx

n+1, and rc
m+z with respect to rx

m+z, re
spectively, thereby validating (6) and (7). In analyzing 
specific problems, as in Sec. IV, the main steps are 
simply the determination of the exponents n and m. 

I t remains to verify that indeed n> — 1 and m> — 3 
always, and further to establish the possible ranges of 
values for c\ and c2, respectively. The basic step in the 
argument is the representation of the functional 
relationship between nt,% and %i by the simple form 
nt,i<xnip. To the extent that such a representation is 
valid, it is easy to see that 0<p<l. For a given shift 
of the steady-state Fermi level, F —> F+8F, the maxi
mum change in trap occupancy will occur if the traps 
are shallow, nt,i<xtii, so that p=l, and the minimum 
change will occur if the traps are deep, i.e., no change at 
all, tit,i= const, so that p=0. More formally, ntt%

ccfiip 

is equivalent to dnt,i/ dni=pnt,i/fii. Now, for a single 
trap-level the Fermi-Dirac occupancy relationship is 

nt,i=Nt/£l+(N/gn^, N=Ncexp£(Et-Ec)/kTj, 

whence 
dntti/dfii =q(nt,i/fii), 

with 
q=(N/gni)/£l+(N/gni)l, 

so that 0<q< 1 where the left- and right-hand equality 
signs hold in the respective limits n%= °° and fii~0. 

Taking nt,£z>ni in Eq. (2) (the trap-free case is 
explicitly calculated in Sec. IV), and noting that 
ntti

ccnipcc (r28)~p from (4a), Eq. (2) can be written 

(r28)pd(r2S)ocr
2dr, 

so that 

Thus, £ccra-2p)/a+2>> and ni+nt,f^nt,i^r~^^^l\ As 
p varies from 0 to 1, (1 — 2p)/(l+p) decreases mono-
tonically from 1 to — | , and — 3p/(p+i) decreases 
monotonically from 0 to —f. Thus, referring to (14) 
and (15), we see that the f-power law is indeed vali
dated. Further, the corresponding ranges of c\ and c2 

are from J to 2 and from 1 to 2, respectively. 
The above argument is rigorous only to the extent 

that the representation nt,i^nip is valid. We have seen 
above, in discussing a single, discrete set of traps that 
this representation is indeed valid only in the limit of 
deep trapping or shallow trapping. For intermediate 
positions of the Fermi level, the equivalent p is a 
function of the position, hence of fi{. However since 

0<p<l and since the corresponding ranges of c\ and 
c2, for this range of p, are relatively narrow, it would 
appear plausible that the f-power law (11) is indeed 
generally valid with the coefficients c± and c2 having 
possibly a very weak voltage dependence, both being 
bounded within the above-specified relatively narrow 
limits. The general validity of the f-power law is 
argued further in Appendix A. 

IV. SOME SPECIFIC TRAP CONFIGURATIONS 

We have seen in Sec. II that the f-power law, Eq. 
(11), is given in terms of a trap-density parameter nt,o 
and two dimensionless constants, c\ and c2, which 
depend "weakly" on the trap configuration, being of 
order unity. The three quantities nt,o, ch and c2 are 
defined in (6) and (7). In this section we discuss briefly 
four specific trap configurations and compute the 
relevant quantities for each of them. The four con
figurations are: A, the trap-free case; B, deep traps; 
C, shallow traps; and D, an exponential distribution of 
traps. In every case it is only the region I : rc<r<rx 

with which we need be concerned. Here again we shall 
assume that rx^>rc. Where rx<3rc, we are dealing with 
the transition from Ohm's law to the f-power law, and 
we cannot expect a simplified treatment to describe 
accurately such transitions. 

A. The Trap-Free Case: n M ^ 0 , n M = 0 

The defining equations are (4a) and (2) with nt,i=Q. 
Substituting for tii from (1) and (2) gives the differential 
equation d(r28)2/dr= {I/2-Kz\x)r2, with solution 

8= (I/6Ten)li2[(r*~r*)/r±Jl2 

~(//67reM)1/2r-1/2, for r » f c , (16) 

where the first relationship is the exact one satisfying 
B.C. (3). Further, since n^ l/r28 from (4a), it follows 
from the approximate relation for 8 in (16) that 
m<x-Tm. Thus, referring to (14) and (15), n= — J and 
m— — f, so that c\—2 and c2= 2. 

The maximum in the 8 field, obtained by differenti
ating the exact form of 8(r) in (16), occurs at rw=41 / 3r c 

~1.6r c and is given by 8m= (1/3X2^)(rc/rx)^
2V/rc. 

In view of the presence of the field maximum so close 
to the cathode, one might well question our use of the 
approximate form of 8 in (16) to evaluate cx and c2 

above, since the approximate form is badly in error 
near the cathode. One way of seeing that the use of 
the approximate form for 8 does not produce significant 
error is to show that its use in the derivation of the 
current-voltage characteristic leads to the correct 
result. Direct integration of (16), taking 8<x-r~112, gives 

I^3T€ixVcJ/2rXl (17) 

which is precisely the result of Meltzer,2 using the 
exact form for 8 in (16), in the limit rxy>rc. Finally we 
note that the above-derived values for c\ and c2 can also 
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be obtained working directly with (17), rather than 
with the approximate form of 8 in (16). 

B. The Deep-Trap Case: nt,i=pt,o = constant 

Consider the situation where the only effective traps 
are a single discrete set lying at an energy Et below the 
thermodynamic Fermi level F0. Let pt,o be the thermal-
equilibrium density of unoccupied traps. Where the 
steady-state Fermi level F has been raised above F0, 
through injection, by more than kT, namely over 
region I, the previously unoccupied traps are filled with 
electrons and nt,£^pt,b. Assuming that pt,o5>no, which 
is the interesting case, it follows that nt,i>ni over most 
of region I, namely everywhere except very close to 
the cathode. I t simplifies matters considerably to take 
nt>i>ni everywhere in region I, so that n* can then be 
neglected in Eq. (2), and nt,i is taken equal to pt,0. I t 
is then trivial to integrate Eq. (2), obtaining 

« = ( ^ « V 3 € ) [ ( f 8 - f c 8 ) / ^ X ^ M / 3 € ) r , 
for r » r c , (18) 

where the first relationship is the exact one satisfying 
B.C. (3). Further, since (ni+nt)i^nt,i=pt,occr°, re
ferring to (14) and (15) we see that n= 1 and m = 0 so 
that C\ = \ and c2= 1. To complete the picture, nt,o=pt, o. 

Here again for this case, one might well raise the 
question of the magnitude of error introduced by the 
incorrect treatment of the cathode region. Strictly 
speaking, the region I should be divided into two 
separate subregions: region la, rc<r<rx', with ni{rx>) 
= pt,o and region 1/3, rx><r<rXj with n(rx) = nQ as 
previously. Over region la, ni>pt,o, so that nt,i can be 
neglected in Eq. (2), and over region 1/3, tii<pt,o, so 
that fii can be neglected in Eq. (2). (In the previous 
argument we have assumed that region 1/5 covers all 
of region I) . If this three-region problem is now ana
lyzed one finds, using obvious notation, that 

Vx,,x=(Vc,X'+Vx,a)/2, 
so that 

V=3(VeiX>+Vx,a)/2. 

Further, Vx,a/Vc,X'= (ptto/^n0)
m, so that for pt,o»n0, 

Vc,x' can be neglected and the above-derived result is 
shown to be correct. 

Since, from (18), VC)X~ept,Qrx
2/6e, the upper end of 

the f-power regime occurs at the voltage FTFL 
c^ept,ora

2/6e. At this voltage all the traps throughout 
the volume are filled—-hence the subscript TFL, de
noting trap-filled-limit. Beyond this point the current 
rises very steeply with voltage in a manner similar to 
the planar-flow TFL problem.5 Details of this regime 
and its transition to the trap-free regime, Eq. (17), 
can be readily worked out in terms of the two-region 
picture, where the two regions are now la, rc<r<rx> 
with fii(rx>) = pt,o as previously, and 1/3, rx><r<ra. 

Finally, we note that although we have discussed 
the deep-trap case in terms of one set of traps at a single 

discrete energy level, it is obvious that the argument 
holds for an arbitrary distribution of traps provided 
only that they all lie below FQ in energy. In this case, 
pt,o is the total density of unoccupied traps at all 
energies. 

C. The Shallow-Trap Case: 724/72M = 8 = constant 

Consider the situation where the only effective traps 
are a single set of shallow traps, i.e., traps lying at an 
energy Et above FQ, of density Nt and statistical weight 
g. As injection proceeds the steady-state Fermi level F 
rises in the forbidden gap. So long as Et~F>kT,. the 
ratio of free- to trapped-carrier densities is a constant4 '5 

given by ni/nt,i=e=N/gNt, N=Ncexp(Et-Ec)/kT. 
This condition will be realized throughout most of 
region I, except close to the cathode where F>Et 

necessarily. For the sake of simplicity assume that this 
shallow-trap condition holds everywhere in region I. 
In that case, fii+nt,i in Eq. (2) can be replaced by tii/0, 
assuming 0 « 1 , which is the interesting case. I t is now 
evident that mathematically the shallow-trap problem 
is formally identical with the trap-free problem A if 
e is replaced by Oe, e.g., in (17), (10), and (11). Since 
trapping effects are completely subsumed in this sub
stitution, ntto is taken equal to zero in (7), (10), and 
(11) and Qx refers only to free charge. Finally, Ci~2 
and c2= 2, as in the trap-free case, since these quantities 
are unaffected by the above substitution. 

If one wants to treat the cathode region more 
rigorously, it is necessary to divide region I into three 
separate subregions: Region la, rc<r<rX", with 
ni(rx,,) = Nt; region 1/3, rx>><r<rx>, with ni(rx>) = dNt; 
and region Fy, rx><r<rx, with n(rx) = m. In region la , 
nf,i is neglected in Eq. (2); in region 1/3, %i is neglected 
and nt,i=Nt= constant; and in region Iy, m is neglected 
and nt,i=ni/6. With rx^>>rc, the corrections introduced 
by this more rigorous treatment are indeed small and 
the above-derived result holds as stated. This more 
careful treatment of region I is, however, useful for 
the study of succeeding regimes in the space-charge-
controlled current-voltage characteristic, a matter 
which we do not pursue further here. 

D. An Exponential Distribution of Traps 

In materials which have a high density of different 
kinds of localized defect states, either of chemical or 
structural origin, it is not unreasonable to expect that 
the different trap states can be well represented by a 
continuous distribution in energy. A particularly con
venient distribution for theoretical analysis is the 
exponential distribution,4 which further has proven 
very useful in the interpretation of experimental data 
on space-charge-limited currents.4'7 Such a distribution 
can be represented in the form Nt(E) = NQ exp(E—Ec)/ 

7 For example, P. Mark and W. Helfrich, J. Appl. Phys. 33, 
205 (1962); H. P. D. Lanyon, Phys. Rev. 130, 134 (1963). 
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kTe, where Nt{E) is the trap density per unit energy 
range and Tc is a convenient temperature parameter 
characterizing the trap distribution. The integrated 
trap density nt{F) between the thermodynamic Fermi 
level F0 and the steady-state Fermi level F is approxi
mately nt(F)c^kTcNoexp(F—Ec)/kTc, where we have 
assumed that exp(F—Fo)/kT<£>l. Now, so long as 
1= Tc/T> 1, nt{F) is also, to a good approximation, the 
density of trapped electrons corresponding to position 
F. (For / < 1, the uppermost trap states, energetically, 
dominate the trapping of injected carriers and the entire 
situation is simply a shallow-trap one, already dis
cussed.) Since n=Ncexp(F—Ec)/kT, which is the 
defining equation for F, the relation between free and 
trapped charge is nt,i=kTcNo(ni/Nc)

111, with 1>1. 
Referring to Sec. I l l , we see that Sarn with n= (1—2)/ 
(/+1) and tit,iccrm, with m= — 3 / ( / + l ) . Referring now 
to (14) and (15), we see that indeed the § -power law is 
valid with a= ( / + l ) / ( 2 / - l ) and c2= (l+l)/l. 

V. EXPERIMENTAL VERIFICATIONS 
OF THE f-POWER LAW 

In Fig. 1 is shown the measured current-voltage 
characteristic for injection from a point contact of 
radius rc^lfx into a single crystal of CdS at room 
temperature. I t is seen that I °c Vm gives a good fit to 
the data. (With the polarity such that the point is 
positive, Ohm's law is observed over the entire voltage 
range, as expected.) Since the room-temperature re
sistivity p of the sample was 20 O-cm, the corresponding 
trap-free f-power law, Eq. (11a) with c i=2 , c 2 =2, and 
nt,o=0, is jr=4.77XV* / 2X10-6 A, for V in V, taking 
e/€o=9.3 and ^=200 cm2/V-sec, and dividing by two 
to take the hemispherical geometry into account. The 
experimental curve in Fig. 1 is fitted by / = 1.75XF3/2 

X10~6 A. From (11) it can then be concluded that 
trapping is taking place with nt^/n^l. Since p=20 
O-cm corresponds to ^o~1015 cm -3, the thermodynamic 
Fermi level FQ was ~ 0 . 2 eV below the conduction band. 
The observation of trapping effects in this circumstance 
is not unexpected for CdS. 

The above experiment, although indeed confirming 
the f-power law, is rather fragmentary in nature since 
it was designed for an entirely different purpose, 
namely for the study of high-field effects in CdS, and 
was carried out in advance of the above theoretical 
developments. We may anticipate in the future a much 
more comprehensive study of the f-power law, involving 
points of different radii and carried out over a sub
stantial temperature range. 
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APPENDIX A: FURTHER MATHEMATICAL 
DISCUSSION 

In formulating the general problem in spherical 
geometry it is convenient to rewrite Eqs. (1) and (2) 
as follows: 

/=Awejuinr2 S = cons t , (Al) 

1 d 

r2 dr 
-(r2S) = (n-n«)+j: (nt>j-nt>j>o), (A2) 

where n is the total free-carrier density; n=no+nii 

ntj is the density of electrons in the yth set of traps 
of density Ntj, statistical weight gy, and located at 
energy level Etj; and ntj,o is the value of ntj in thermal 
equilibrium (no applied voltage). Where there is a 
distribution of traps continuous in energy, ]Ty is to be 
replaced by an integration, fdE. 

The quasithermal equilibrium relationship between 
the nt,j and n is expressed by the Fermi-Dirac occu
pation function, written in the form 

Nt 
nt,: 

1+iNj/gjn) 

Pt,j=Nt,j—nt,j=-
NjNtj/gjn 

1+iNj/gjn) 
(A3) 

Nj=Ncexp-
Et,j—E,c 

kT 

I t is useful to define dimensionless variables as 
follows: 

u=no/n, i = 3 el/^ire2n<?ixrc
z, 

v= 12wenoixreV/I, z= {r/rcf. (A4) 

In terms of these variables, Eqs. (Al) and (A2) com
bine to give the equation 

du 1 — u 1 — u 
i— = ̂ —+j:Bj ; 
dz 1+CjU 

n0 (1+Q) 

(A5) 

and the voltage relationship 

becomes 

V= / Sdr 

J rc 

rZaudz /ra\* 

A z^' Za~\rJ 
(A6) 

I t is obvious that the integration in (A6) cannot be 
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performed analytically, even for the simplest case, 
namely with all Bj=0 in (AS), i.e., the case of no traps. 

For further discussion it is convenient to consider 
first a few simple cases: 

I . The Trap-Free Case 

Since there are no traps, all of the Bj=0, so that 
(A5) can be written 

udu/(l-u) = {-l+l/(l-u)}du=(l/i)dz, (A7) 

with solution 

-u-\n(l-u)= (l/i)(z-l) = w, (AS) 

satisfying B.C. (3). In terms of the variable w, (A6) 
becomes 

%Wa Udw 1 Za 

wa = -(za-l)~—. (A9) 

as determined with the aid of a digital computer. Thus 
v= 10.49r-1/3, or from (A4), 

I=1.06irenQnWen0y
i2V*i2. (A10) 

The approximate result (11), taking nt,o=0 and c\ = c^ 
= 2 as determined in Sec. IV, is the same as (A 10) 
except that the numeric 1.06 is replaced by 4/3V2 = 0.94. 

In the above discussion, the approximation of K\ by 

udw/w4/d 

involves a small error (an overestimate) in the range, 
approximately, 0<w<l/i. The integral 

= , - 1 / 3 V = l 

W 
udw 

r , U 4 / 3 rl/i 

lw+-\ « (1A)" 4 / 3 / udw 

o (w+l/i) 4/3 
i(2v2/3)(l / i )1 '« , 

The range of the variable u is 0 < ^ < 1 . From (A8) 
it follows that for w> 6 ,0 .999<u< 1. Thus, for z> l + 6 i 
or w>6 there is negligible error in taking u— 1 in (A6) 
and (A9). 

Ohm?s-Law Regime 

Rewrite (A6) as v==Ii-\-I2 with 

c l + 6 i 

since for small w, U^L(2W)112 from (A8). In the above 
we have used 

m 

/ i = udz/z' 4/3 

and 

12= J dz/z^ = 3{ (i+ty-w-za-1**). 
J 1+Qi 

Now, for i « l / 6 , 7 i < 6 i « l and 7 2 ^ 3 . Thus vc^.3, 
which corresponds, from (A4), to Ohm's law: 
I—Anenoixr CV. 

\-Power Regime 

Consider currents i in the range l« t<0s a . There 
will be an enormous range of currents satisfying these 
inequalities even for ra/rc as small as 100, since then 
2 a=106 . Rewrite (A9) as v=i~l^K, K=K1+K2 with 

udw/w^~6V2(l/iy/«. 

Thus, for \/i small enough, the error is negligible. 

I I . The Deep-Trap Case 

Consider a single set of traps lying below FQ so that 
C = N/gn<^l in (A3) and (AS), where we have sup
pressed the subscript j . Thus the single-trap term on 
the right-hand-side of Eq. (A5) is B(l-u)/(l+Cu) 
~J3(1 —w). With this approximation, (A5) can be 
written as 

[l/(l-u)-l/(l+Bu)~]du=[(l+B)/i1dz = dw, (All ) 

with solution 

- l n ( l - « ) - (1/B) ln(l+Bu) 

= £(l+B)/i](z-l) = w. (A12) 

The voltage integral (A6) can now be written as 

-1/3 rwa u g w 

and 

K\— I udw I \w-\—J 

/

wa i t 1 \ 4 / 3 

dw I ( w-\— j 

,=(^-Y r 
\1+B/ JO [w+{\+B)/iJll 

1+B 
W 0 ~ Za. 

(A13) 

The f-power law corresponds to the current range 
\<gj,/ (\-\-A)<£za. Following the same procedure as in 
the preceding case I, we write (A 13) as 

For the range of i's considered, i£2—3/61/3 and 

KT~\ udw/wW = SM, 
Jo 

v=[i/(l+B)J-WK, K=K1+K2 

with 

Ki— j udw 
i J 

file:///-Power


A1452 L A M P E R T , M A N Y , A N D M A R K 

and 

K 
l-f^l4 '3 

-3(«+—) -(„.+—) ). 

III. The General Case 

This case is characterized by Eq. (A5). An analysis 
along the same lines as followed in cases I and I I above 
gives the result 

For the range of i's considered 

K^3/6^z=1.65 and K* ̂ i udw/wA/s. 
o 

( I v—1/3 /•% 

1+B/ JO 

BJ 

i 1 + Q 
As with case I, K± can only be evaluated, using (All) 
or (A12) with the aid of a computer, which has not been Again, in the current range 
done. 

Noting that for deep traps, C<<Cl, the quantity 
Bc^.ptto/fio with pt,o=Nt—nito, the final result can be 
written, assuming pt,&2>no or By>\, as w ^ 

I=(9/K*i2)4*mw(e/epi,o)1i*V>l\ (A14) 

udw 

[w+{l+B)/iJi*' 

1+B 
wa = za. 

(A15) 

where K remains to be evaluated. The approximate 
result (11), taking nt>o=pt,o^no and ci = | , c 2 = l , as 
determined in Sec. IV, is the same as (A 14) except that 
the quantity 9/Z3 / 2 is replaced by 2^/3 = 0.94. 

As with case I above, the approximation of K\ by 

1 « «za, v=[_i/(l+B)Jr^Ky 

1+B 

K=K1+K2, Kxc w ,4/3 

and 
K2~3/6l'\ 

,4/3 udw/w' 

is in error over the range 0<w< {l+B)/i. However, 
it is easily shown that 

- ( l + B ) / i 

udw/wA,z 

' o 

is in any case negligibly small for (l+B)/i<Kl. 

where i£i can only be evaluated with the aid of a 
computer; and again the f-power law is obtained. 

APPENDIX B: A COMPARISON OF TWO 
PURE SPACE-CHARGE REGIMES 

IN THREE GEOMETRIES 

In the accompanying Table I we present the calcu
lated current-voltage characteristics for two situations, 
the trap-free crystal and the crystal with an exponential 
distribution of traps, neglecting the thermal free carriers 
no, in three different one-dimensional flow geometries: 

T A B L E I . I-V characteristics for pure space-charge regimes (»0 negligible). / corresponds to current injection a t re, collection a t ra; 
Ir corresponds to the reverse polari ty. 

Exponential distribution of t r a p s : 

Current-flow 
geometry N o t raps d 

Nt(E)=N0exp(E-Ec)/kTc; l= —>1 
T 

Plane-parallela 

Cylindrical13 

Spherical0 

9 V2 

I=-€flA-
{ra~rc)

z 

V2 

I = 2TT€/JLL 

fa2 

3TT V2 

I = —e/j,— 
2 fa 

L2rJ 

/ = 
el 

\_eN*kTc{l+l)_ 

2el 

(enNcA) 
"2/+r 

.1+1 

i+i yi+i 

1 = 

Ir = I 

LeNQkTc(l+l)_ 

21 

U+i 
3d 

_eNQkTc(l+l) 

(27refjiNcL) 

(ra~rc)
n+1 

' 21 ~ ] m Vl+1 

.1+1J TaU 

+)] 
(47reyuA^c) 

'21-V 

.1+1. 

i+i yi+i 

v 2 1 - 1 

V 21-1 Ta 

lr = l\ 

Ll+1 fc 

a A is the electrode a rea ; (ra—re) is the cathode-anode spacing; Ir s J . 
*> L is the length of the cylinder; it is assumed t h a t ra^>rc. 
c I t is assumed t h a t ra^>rc. 
d T h e shal low-trap result is given s imply by mul t ip lying the corresponding expressions by 0, t he ra t io of free to t r apped charge. 
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the planar, cylindrical, and spherical geometries. As 
noted in Table I, the result for the shallow-trap situ
ation is obtained from the trap-free situation simply by 
inclusion of the 6 factor, which is just the ratio of free 
to shallow-trapped charge. As noted in the text, for the 
spherical geometry the pure space-charge I-V charac
teristics depend explicitly on the outer radius ra. It is 
seen that a like result holds also for the cylindrical 
geometry. The functional dependence of / on V is 
seen to be the same, for any trap configuration, in all 

I. INTRODUCTION 

IT has been demonstrated experimentally1-7 by 
Kennedy and his co-workers, by Drickamer and his 

co-workers, and by others that diamond-type lattices, 
when subjected to pressure, suffer a transformation into 
a denser, more highly coordinated state, which is 
metallic. The general nature of the phase diagram is 
that the melting point of the nonmetallic state falls 
as the pressure is increased until a triple point is 
reached and the solid-solid transition corresponding 
to a change from a nonmetallic to a metallic state occurs 

f This research was supported by the Directorate of Chemical 
Sciences, United States Air Force Office of Scientific Research, 
Grant No. AF-AFOSR-245-64. 
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three flow geometries—a result reminiscent of the 
/ ex Vm for the vacuum diode independent of flow 
geometry.3 For the sake of completeness the charac
teristics ir with reversed polarity of applied voltage are 
also presented. These latter characteristics are presented 
in a manner which gives directly the rectification ratio 
ir/i. It is seen that this rectification ratio for spherical 
geometry can be very small indeed, and is much smaller 
than the corresponding ratio for cylindrical flow for 
the same ra/rc. 

after which the melting point rises again with an 
7 increase in pressure. It is thought that this general 

phase diagram applies for all the members of group IV; 
carbon, silicon, germanium, etc., and to the binary 

' compounds one column removed from group IV in the 
periodic table such as boron nitride, aluminum phos-
phide, gallium arsenide, indium antimonide, etc., and 
even those two removed from group IV (though less 
work has been done on them) such as zinc selenide, 

r which averages four valence electrons per atom. 
5 It is our purpose here to describe a technique of 

removing these new materials from the high-pressure 
I apparatus in which they were produced in order that 
, their properties can be studied more completely. The 

difficulties and limitations of having to work within a 
high pressure chamber are very great. 

7 II. THE TECHNIQUE 

5 It is very well known in chemistry that a transition 
from one solid phase to another or from a liquid to a 
solid or, in some instances, in the opposite direction can 

;, be slow and dependent upon nuclei. The transformation 
8 of metallic tin to the semiconducting, diamond-type 

structure at low temperatures well illustrates this. 
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The metallic forms of indium antimonide, indium telluride, and the metallic alloys InSbSn, InSbSn2, and 
InSbSn4, were prepared at high temperature and high pressure, cooked, and subsequently quenched to 
— 197°C before release of the pressure to one atmosphere. The metastable metallic forms can be retained at 
one atmosphere pressure at low temperatures indefinitely and studied conveniently. InSb (II) and its meta
stable alloys with tin have lattice parameters essentially identical with those of metallic tin. The lattice 
parameter of the cubic form of indium telluride is 6.177±0.002 A at 25°C. The compressibilities of InSb (II), 
InSb(I) and of S n ® at -197°C are 0.9, 3.6, and 3.1XK)-6 bar"1, respectively. The compressibilities of 
InTe(I) and InTe(II) at 25°C are 6.3 and 3.8X10"6 bar"1, respectively. The heat of transformation A#°2i0, 
(1 atm) InSb(II) -> InSb(I) is -4.77±0.04 kcal per mole. The resistivity of InSb(II) at 77°K is 77X10"^ 
O-cm. The velocity of sound in polycrystalline InSb(II) is approximately 3900 m/sec. The Brinnel hardness 
numbers of InSb (II) and Sn(j8) at 77°K are 230 and 46 kg mm-1. InTe(II) is diamagnetic, its susceptibility 
is —0.14 emu g-1. 


